首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   110篇
  国内免费   30篇
化学   900篇
综合类   6篇
物理学   9篇
  2023年   6篇
  2022年   23篇
  2021年   35篇
  2020年   52篇
  2019年   38篇
  2018年   26篇
  2017年   27篇
  2016年   43篇
  2015年   41篇
  2014年   40篇
  2013年   52篇
  2012年   57篇
  2011年   34篇
  2010年   50篇
  2009年   50篇
  2008年   46篇
  2007年   50篇
  2006年   45篇
  2005年   37篇
  2004年   37篇
  2003年   45篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   12篇
  1998年   6篇
  1997年   10篇
  1996年   4篇
  1995年   9篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1985年   3篇
  1984年   2篇
  1980年   1篇
  1979年   2篇
排序方式: 共有915条查询结果,搜索用时 15 毫秒
31.
We have developed an analytical method for the determination of lincomycin, tylosin A and tylosin B residues in royal jelly using liquid chromatography–triple quadrupole tandem mass spectrometry analysis. For extraction and purification, we employed 1% trifluoroacetic acid and 0.1 m Na2EDTA solutions along with an Oasis HLB cartridge. The target antibiotics were well separated in a Kinetex EVO C18 reversed‐phase analytical column using a combination of 0.1% formate acid in ultrapure water (A) and acetonitrile (B) as the mobile phase. Good linearity was achieved over the tested concentration range (5–50 μg/kg) in matrix‐matched standard calibration. The coefficients of determination (R2) were 0.9933, 0.9933 and 0.996, for tylosin A, tylosin B and lincomycin, respectively. Fortified royal jelly spiked with three different concentrations of the tested antibiotics (5, 10 and 20 μg/kg) yielded recoveries in the range 80.94–109.26% with relative standard deviations ≤4%. The proposed method was applied to monitor 11 brand of royal jelly collected from domestic markets and an imported brand from New Zealand; all the samples tested negative for lincomycin, tylosin A and tylosin B residues. In conclusion, 1% trifluoroacetic acid and 0.1 m Na2EDTA aqueous solvents combined with solid‐phase extraction could effectively complete the sample preparation process for royal jelly before analysis. The developed approach can be applied for a routine analysis of lincomycin, tylosin A and tylosin B residues in royal jelly.  相似文献   
32.
The sensing and accurate determination of antibiotics in various environments represents a big challenge, mainly owing to their widespread use in medicine, veterinary practice, and other fields. Therefore, a new, simple electrochemical sensor for the detection of antibiotic chloramphenicol (CAP) has been developed in this work. The amplification strategy of the sensor is based on the application of magnetite nanostructures stabilized with carboxymethyl cellulose (Fe3O4‐CMC) and decorated with nanometer‐sized Au nanoparticles (NPs) (Fe3O4‐CMC@Au). In this case, CMC serves as a stabilizing agent, preventing the aggregation of Fe3O4 NPs, and hence, enabling the kinetic barrier for electron transport to be overcome, and the Au NPs serve as an electron‐conducting tunnel for better electron transport. As a proof of concept, the developed nanosensor is used for the detection of CAP in human urine samples, giving a recovery value of around 97 %, which indicates the high accuracy of the as‐prepared nanosensor.  相似文献   
33.
The multicomponent assembly of pharmaceutically relevant N‐aryl‐oxazolidinones through the direct insertion of carbon dioxide into readily available anilines and dibromoalkanes is described. The addition of catalytic amounts of an organosuperbase such as Barton's base enables this transformation to proceed with high yields and exquisite substrate functional‐group tolerance under ambient CO2 pressure and mild temperature. This report also provides the first proof‐of‐principle for the single‐operation synthesis of elusive seven‐membered ring cyclic urethanes.  相似文献   
34.
35.
36.
The introduction of a novel tetra-ortho-chloroazobenzene amino acid (CEBA) has enabled photoswitching of the antimicrobial activity of tyrocidine A analogues by using exclusively visible light, granting spatiotemporal control under benign conditions. Compounds bearing this photoswitchable amino acid become active upon irradiation with red light, but quickly turn-off upon exposure to other visible light wavelengths. Critically, sunlight quickly triggers isomerisation of the red light-activated compounds into their original trans form, offering an ideal platform for self-deactivation upon release into the environment. Linear analogues of tyrocidine A were found to provide the best photocontrol of their antimicrobial activity, leading to compounds active against Acinetobacter baumannii upon isomerisation. Exploration of their N- and C-termini has provided insights into key elements of their structure and has allowed obtaining new antimicrobials displaying excellent strain selectivity and photocontrol.  相似文献   
37.
38.
39.
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme‐catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non‐ inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside‐modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular‐recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4′(ANT(4′)), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4′) seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non‐inactivable derivatives a challenging task.  相似文献   
40.
Drug discovery aimed at the efficient eradication of life-threatening bacterial infections, especially in light of the emergence of multi-drug resistance of pathogenic bacteria, has remained a challenge for medicinal chemists over the past several decades. As nutrient acquisition and metabolism at the host-pathogen interface become better elucidated, new drug targets continue to emerge. Metal homeostasis is among these processes, and thus provides opportunities for medicinal inorganic chemists to alter or disrupt these processes selectively to impart bacteriostatic or bacteriotoxic effects. In this minireview, we showcase some of the recent work from the field of metal-based antibacterial agents and highlight divergent strategies and mechanisms of action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号